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Abstract—In this paper, we propose a lightweight and efficient
state-space model-based instance segmentation network named
Mambalnst, which extracts deep semantic features through a
LightSSM Block consisting of gating mechanisms and residual
connectivity to model long-distance spatial dependencies with
linear computational complexity. We design a novel downsam-
pling method called FRDown to efficiently capture contextual
information, thereby improving the network’s local information
perception. With its excellent model architecture and simple
training method, Mambalnst-B achieves 40.8% in Mask mAP
on a single 4090 GPU with an inference time of 2.28 ms on
the COCO-seg. Our proposal demonstrates first proof of SSM’s
effectiveness in real-time instance segmentation, setting a new
performance benchmark for Mamba-based techniques in this
particular application.

Index Terms—Instance Segmentation, State Space Model

I. INTRODUCTION

Instance segmentation is complex and requires both accurate
detection of each and every objects and precise delineation of
their boundaries at the same time, which is a very challeng-
ing task in computer vision. Convolutional Neural Network
(CNN) based instance segmentation models [1]-[8] are used in
processing image data to extract local features in the image via
convolutional kernels, and some models usually have a better
balance of speed and performance [9]-[11], however, due to
the limited sensory field of CNNs, they have a relative lack
of feature coherence to associate instances in high-level visual
semantic information, which may lead to poor segmentation
results on large objects. Vision Transformer (ViT) based
instance segmentation models [12]-[16], which are able to
capture global features and naturally model remote seman-
tic dependencies through the self-attention mechanism [17],
perform well in distinguishing overlapping instances with
the same semantic categories, but they require significant
computational resources both in the training and inference.
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Fig. 1. Effective Receptive Field (ERF) visualization results. High-intensity
green pixels indicate a greater response to the center pixel. (a) Mask-
RCNN [1]. (b) RTMDet [11]. (c) YOLOv8-seg [31]. (d) Mambalnst (Ours).

Recent advancements in the field of natural language pro-
cessing have seen the emergence of designs based on State
Space Model (SSMs) [18]-[20], exemplified by the Mamba
[21], it ensure that models maintain high efficiency during se-
lective information processing and achieve linear scalability in
sequence length, thereby enhancing computational efficiency
when handling long sequence data in language modeling.
Despite the successful application of SSMs in various tasks,
such as classification [22]-[24], object detection [30], and
semantic segmentation [27]-[29], the efficacy of SSM-based
approaches in the context of instance segmentation remains
underexplored. In this paper, we introduce Mambalnst, an
innovative model based on the SSM, tailored to the task of
instance segmentation, that effectively integrates local and
global information while reducing parameter introductions and
computational resource consumption. As shown in Fig. 1, we
compared Mambalnst with representative instance segmenta-
tion methods using the Effective Receptive Field (ERF) [42],
we measured the ERF of the weights before and after model
training, and only Mambalnst showed global image perception.
We propose the Lightweight State Space Model (LightSSM)
Block consisting of a gating mechanism and residual connec-
tion, and devise a novel downsampling method called Fusion
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feature Residual DownSampling (FRDown). In summary, our
contributions are as follows:

o We design a LightSSM Block consisting of gating mech-
anism and residual connection to extract deep semantic
features, modeling long distance spatial dependencies
with linear computational complexity.

o We design an efficient downsampling module to effec-
tively capture contextual information named FRDown,
aiming to achieve effective preservation of key details
such as boundaries and textures through more efficient
feature filtering. Textures through more efficient feature
filtering and reorganization mechanisms.

o We design Mambalnst-Tiny/Base (T/B), exhaustive ex-
periments on the MSCOCO [39] dataset, and quantitative
comparisons with other state-of-the-art methods show the
robust performance of Mambalnst on various metrics.

II. RELATED WORK
A. Instance Segmentation Framework

The rapid advancement of CNNs and their hierarchical
feature extraction approach have seen widespread applica-
tion in instance segmentation. Mask R-CNN [1] established
a foundation by generating candidate regions through the
Region Proposal Network, while YOLACT [9] introduced a
model capable of fast, high-quality mask predictions without
requiring resampling operations. SOLQ [2] simplified models
by transforming instance segmentation into a single classi-
fication problem via the introduction of instance categories.
CondInst [5] and QueryInst [7] further improved accuracy
and speed by employing dynamic instance-aware networks
to generate convolution kernels and driving dynamic mask
heads through a query mechanism, respectively. RTMDet [11]
enabled efficient instance segmentation using compatible back-
bone and neck architectures alongside fundamental building
blocks for deep convolutional layers.

Although CNNs excel in extracting local features, they
inherently struggle with capturing long-range dependencies,
a critical challenge in accurate instance segmentation. In
contrast, Transformers [12]-[14] have excelled in this area due
to their superior long-range modeling capabilities, achieving
significant success across various domains, from general-
purpose visual backbones to instance segmentation models.
Mask DINO [15] builds upon DINO [33] by adding a branch
for binary mask prediction in instance segmentation, whereas
Mask Frozen-DETR [16] minimizes training time and GPU
resource consumption by training an additional lightweight
mask network to predict instance masks within bounding
boxes provided by a frozen DETR [32] object detector.
Nonetheless, Transformer-based models face substantial com-
putational overhead due to the quadratic complexity of the
attention mechanism, and their superior performance is highly
dependent on large-scale pre-training schemes.

B. Visual State Space Model

Mamba [21] utilizes a linear time series modeling approach
to effectively balance computational efficiency and model
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Fig. 2. Illustration of Mambalnst architecture.

flexibility in language modeling and audio processing tasks.
Based on this foundation, SSM [22]-[24] was soon intro-
duced to the vision domain, demonstrating high efficiency in
visual representation learning such as image categorization.
MambaOut [25] concludes the existence of advantages of
Mamba in the downstream dense prediction task of vision
from the interpretability of SSM. In the field of medical
image segmentation, VM-UNet [26] is the first medical image
segmentation framework based on a pure SSM model. RS-
Mamba [27] introduces Co-Completion Module to enhance the
fusion of dual-encoder features, and demonstrates excellent
performance for semantic segmentation on high-resolution
remote sensing images. The proliferation of subsequent work
on Mamba on various visual tasks [28]-[30] has greatly
demonstrated its good scalability, and our work starts from
the idea of simplicity and flexibility of the model, and ease of
training, with the hope of establishing an SSM based baseline
on instance segmentation.

III. METHOD

A. Overall Architecture: Mambalnst
The Mambalnst proposed in this paper has a 5-
layer structure with the number of channels set to

{64, 128, 256, 512, 1024}, and adopts the Ushaped architec-
ture, which mainly consists of three parts: the backbone, the
PAFPN and the segmentation head. Specifically, the first layer
uses the standard convolution with convolution kernel 3, the
second, third, fourth and fifth layers adopt the stacked form of:
FRDown and LightSSM Block, where the repetition number
of LightSSM Block in backbone is {3, 6, 6, 3}, FRDown
performs multi-level and multi-scale information fusion, pre-
serving a significant portion of contextual information. The
detailed designs of Mambalnst is shown in Figure 2. Notably,
unlike traditional methods, Mambalnst is trained from scratch,
avoiding any pre-training programs.

B. LightSSM Block

Our proposed LightSSM Block is a feature extraction unit
designed for instance segmentation, as shown in Figure 3. The
LightSSM Block structure starts from the LayerNorm layer of
the input data, after which it passes through a linear layer and
is fed into DWConv to operate on each input channel, focusing
on the extraction of the spatial features while reducing the
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need for additional parameter calculations. The introduction of
additional parameter calculations is minimized. The output of
Selective Scan 2D is then linearly transformed and gated, and
the linearly transformed output is adjusted to depth features
using normalized features, and finally, the features are passed
to the final linear layer, where LightSSM Block uses residual
connection to implement Channel attention Fusion (CF) to
make the depth features add up with the channel localized
features. DWConv is used to introduce locality in FFN to
provide good location information.The design of LightSSM
Block focuses on reducing the parameter introduction and
computational resource consumption while enhancing the abil-
ity to extract rich spatial features from the image, making the
whole Mambalnst flexible and lightweight in construction.

C. Fusion feature Residual DownSampling

Conventional downsampling methods usually result in the
loss of important spatial information [35]-[38], especially
boundary and texture details, but this is crucial for instance
segmentation that require pixel-level accuracy. We implement
multi-scale feature extraction through gating mechanisms and
residual connections, and design a downsampling module
that preserves as much contextual information as possible:
FRDown, as shown in Figure 2 (left), which utilizes a seg-
mented, lightweight feature processing unit to extract multi-
scale feature maps into the Mamba modules.
2}~ =W, (Convsyxs(zF72)) (1)

2" = @ (BN (Concat(z} ', 2571))) 2)

In Equation (1), the input feature 2*~2 is passed through a 1x 1

convolutional layer using W, Depthwise Convolution (DW-
Conv) on different paths, to efficiently extract features without
introducing too many parameters, and then the resulting two-
channel features 2~ and 25! are spliced together and
nonlinearly transformed by batch normalization and ® (SiLU
activation function) to enhance the global context representa-
tion. z**1 denotes the input features of the feature processing
unit, and the global semantic information is preserved during
downsampling by adaptive average pooling. Then the number
of channels is adjusted by the 1 x 1 convolutional layer. 2**!
is defined as:

2" = Wy (Avgpool (W, (z%))) 3)

The feature processing unit uses Gating(-) for adaptive scaling.
x’j“ applies W, to sum the result with the original input
to form a residual connection and multiplies it with the
activated features via the ¢ (GELU activation function), xlfH
as coefficients, ® represents the element-wise multiplication
of matrices. Then the global context-guided Conlel(mk)
is multiplied with the feature processing unit to obtain the
sampled output 2**2, realizing the global enhancement of the
feature.

F T2 = W,Gating (1) @ 2**? 4)

Gating(X) = (W, (X) + X) 0 Wa(X)  (5)
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Fig. 3. Tllustration of LightSSM Block architecture. LightSSM Block scans
the input image in four directions (horizontally up and down, vertically left
and right) and then sums the scanned features to capture complex spatial
relationships and provide a comprehensive understanding of the context to
enable global modeling.

FRDown represents a downsampling methodology that is
engineered to preserve and augment critical information, con-
currently reducing the associated complexity. This approach
facilitates the integration of local details with global context
within downsampled features, thereby elevating the perfor-
mance of instance segmentation.

1V. EXPERIMENT
A. Implementation Details

All experiments are implemented based on Python 3.8 and
CUDA 12.1, and run on 8 x NVIDIA H800 GPUs, trained
and validated on the MSCOCO with an input image size of
640x640. All models use official pre-trained models tested
for latency on NVIDIA 4090 GPU using the half-precision
floating-point format (FP16), with the TensorRT version 8.4.3
and cuDNN version 8.2.0.

B. Experimental Results

We compared Mambalnst with previous state-of-the-art
methods on the val set of MSCOCO. As shown in Table I, bold
indicates the best, — indicates that the paper does not provide
data or does not publicly provide the verification weights.
We first compare Mambalnst with the traditional approach
using the standard ResNet [41] backbone, and Mambalnst-
B possesses a definite performance advantage, with a 2.6%
increase in Mask mAP and fewer parameters compared to
CondInst-R50 [5]. YOLOvS-seg [31] and RTMDe-Inst [11]
were augmented with a large amount of data and trained from
scratch, and for a fair comparison Mambalnst used almost
the same training hyper-parameters, and without any addi-
tional complex optimizations, Mambalnst-T outperformed the
original YOLOv8-N-seg, improving the Mask mAP by 9.5%.
Compared to the state-of-the-art RTMDet-Ins-T, Mambalnst-
T also maintains a 1.8% advantage. We also compared the
Mambalnst on the val set of MSCOCO results for more
detailed Mask AP. Our model also has an absolute advantage
in terms of latency and FLOPs.
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TABLE I
SEGMENTATION RESULTS ON THE COCO SEGMENTATION DATASET.

Method ‘ Mask mAP(%) ‘ Mask mAP50(%) ‘ Params ‘ FLOPs ‘ Latency
YOLOV8-N-seg [31] 29.6 48.2 3.4M 12.6G 1.78 ms
RTMDet-Ins-T [11] 354 - 5.6M 23.6G 1.89 ms
RTMDet-Ins-S [11] 38.7 - 10.2M 43.0G 2.26 ms
YOLOV8-S-seg [31] 36.0 56.8 11.8M 42.6G 2.11 ms
Sparselnst-R50 [40] 342 553 31.6M 99.1G 11.60ms
Mambalnst-T (ours) 37.2 58.7 52M 16.0G 1.81 ms
Mask-RCNN-R50 [1] 34.7 - 44.4M | 240.0G | 34.40ms
CondInst-R50 [5] 382 59.1 339M | 240.8G | 33.30ms
QueryInst-R50 [7] 39.9 622 173.0M | 158.0G —ms

SOLOv2-Lite [3] 375 57.7 644M | 253.5G | 29.10ms
Mask-RCNN-R101 [1] 36.1 - 63.4M 308.0G | 42.10ms
DiffusionInst [43] 37.5 - -M -G - ms

EASInst [44] 379 57.7 -M -G —ms

Mambalnst-B (ours) 40.8 63.9 18.1M 553G 2.28 ms

C. Ablation Study

To validate our analysis of LightSSM Block and to
evaluate the efficacy of FRDown, we examined each module
in Mambalnst, focusing on Bbox mAP and Mask mAP, and the
experimental results are shown in Table II. Among them, CF
and FRDown cannot work well when they appear in the model
alone, but they work well in combination with LightSSM
Block, which actually comes from the local details and global
context information provided by FRDown and the effective
retention of key details such as boundaries and textures by CF.

TABLE I
ABLATION STUDY ON MAMBAINST.

Method | LightSSM Block CF  FRDown | Box mAP(%) | Mask mAP(%)

1 36.2 29.6
2 v 434 35.9
3 4 36.1 29.9
4 v 38.4 315
5 v v 45.1 36.5
6 v v v 457 37.2

We explored the number of repetitions of four different vari-
ants of LightSSM Block in the backbone. The experimental
results are shown in Table III. Blocks indicate the number of
repetitions of LightSSM Block in the backbone. ¢ indicates
that the LightSSM Block is used in the neck, Xindicates that
the LightSSM Block is not used in the neck. In output feature
map size, P2=20 x 20, P3=40 x 40, P4=80 x 80, P5=160 x 160.
The low accuracy of {3, 3, 3, 3} is caused by the insufficient
number of repetitions of LightSSM Block in the backbone.
The {3, 6, 9, 3} and {3, 9, 9, 3} bring additional computa-
tional overhead but do not yield the corresponding level of
accuracy improvement, which is in fact a kind of redundancy
due to the duplication of LightSSM Block.

In the Neck, although we can realize a lighter model by
removing the LightSSM Block, it will lead to an inevitable
decrease in the accuracy, and the experimental results prove
that the LightSSM Block in the Neck part can also show
a certain richness of gradient flow and feature fusion. The
output feature map selection of { P2, P3, P4, P5} variant can
substantially improve the accuracy, but it inevitably results in
the increase of GFLOPs. Above all, the Blocks are {3, 6, 6, 3}
and the Feature Maps are {P3, P4, P5}, using LightSSM
Block in the neck. This scheme can better achieve the balance

Fig. 4. Visualization results on the MSCOCO dataset. (a) Original images.
(b) Mask-RCNN-R50 [1]. (¢) CondInst-R50 [5]. (d) RTMDet-Ins-T [11]. (e)
Mambalnst-T (Ours). Zoom in for better visualization.

between accuracy and complexity, and better adapt to efficient
instance segmentation.

TABLE III
THE CONFIGURATIONS OF MAMBAINST VARIANTS.

Blocks | w/o Mamba(Neck) | Feature Map | Box mAP(%) | Mask mAP(%) | FLOPs
{3,6,9,3} v {P3, P4, P5} 46.0 374 208G
{3,9,9, 3} v {P3, P4, P5} 46.2 379 12.8G
{3,6, 6,3} X {P3, P4, P5} 44,1 36.3 17.6G
{3, 6, 6,3} v {P2, P3, P4, P5} 463 382 39.6G
{3,6,6,3} | 4 | {p3,pa,p5} | 457 | 372 | 160G

The visualized instance segmentation comparison result
graph is displayed in Figure 4. Because of the superior global-
awareness domain of the Mambalnst architecture and the
effective preservation of key details such as boundaries and
textures, which allows the model to obtain more comprehen-
sive and fine-grained boundaries and dimensions with higher
confidence, which further proves the significant advantage of
Mambalnst in the domain of instance segmentation.

V. CONCLUSION

In this paper, we design the LightSSM Block with linear
computational complexity modeling long-range spatial depen-
dencies for extracting deep semantic features. we propose
a new downsampling strategy, FRDown, that fuses global
contextual information while enhancing local feature repre-
sentation. Extensive experiments on the COCO-seg benchmark
verify the extreme competitiveness of our proposed method,
Mambalnst, and the performance improvement is largely at-
tributed to the design of the Mambalnst architecture, and we
hope that our method will bring some new ideas to the field
of efficient instance segmentation.
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